
 

INFORMATION TECHNOLOGY & INNOVATION FOUNDATION | APRIL 2022 PAGE 1 

 

AI Bias Is Correctable.  
Human Bias? Not So Much 
DAVID MOSCHELLA  |  APRIL 2022 

Defending Digital Series, No. 5: Individual decisions are shaped by our values, beliefs, 
experiences, inclinations, prejudices, and blind spots. These “biases” can easily leak into 
information system design. But overall and over time, modern technology will prove a force for 
more fair and objective societal actions. 

You’ve probably heard the joke. Two campers see a bear approaching. One starts putting on her 
sneakers. The other asks: “What are you doing? You can’t outrun a bear.” The response is 
obvious: “I don’t have to outrun the bear; I just have to outrun you.” 

So it is with the “objectivity” of information systems. The question is not whether digital services 
are—or ever can be—completely unbiased. It’s whether they can outrun the available 
alternatives. Much more often than not, they can and will. 

PERVASIVE HUMAN BIASES  
The word bias is now mostly used as a pejorative, but biases should be seen along a spectrum of 
human attitudes spanning our values, beliefs, allegiances, opinions, preferences, interests, 
stereotypes, prejudices, and misunderstandings. This broader definition shows how deeply biases 
are built into the human psyche, and why they can never be fully eliminated. Some biases are 
seen as “good” and to be built upon; others are “bad” and in need of remedies. Sometimes there 
is a clear consensus as to what is good or bad, but often this a matter of debate. 

Additionally, it’s all too easy to believe that bad biases are the result of a lack of understanding, 
and if only people were more informed, society would be much more objective and fair. While 
lack of knowledge is certainly a major source of bias, professional expertise doesn’t fare much 
better. Whether we are looking at judges, lawyers, professors, scientists, doctors, engineers, 
architects, writers, journalists, politicians, investors, economists, managers, coaches, 
consultants, or computer programmers, sharp differences and entrenched opinions are the norm. 
Deep experience and expertise do not necessarily lead to objective consensus. As behavioral 
scientists have long noted, subject matter experts tend to: 

1. Rely too much on societal and professional stereotypes  

2. Overvalue their personal experiences, especially recent ones 

3. Overvalue their personal gut feel 

4. Prefer anecdotes that confirm their existing views 
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5. Have limited knowledge of statistics and probability 

6. Resist admitting mistakes 

7. Struggle to keep up with the skills and literature in their fields 

8. Burn out and/or make mistakes in demanding work environments 

9. Avoid criticizing, evaluating, or disciplining their peers 

10. Become less open-minded over time 

For decades, we have seen the unfortunate results of these traits in criminal sentencing, student 
grading, medical diagnoses and treatments, hiring and salary negotiations, financial services, 
editorial coverage, athletic evaluations, political processes, and many other areas. Fortunately, 
data analytics, expert systems, algorithmic operations, and—most recently—machine learning 
can establish a software and data foundation upon which better and more consistent decision-
making can be built. It’s hard to think of any other approach that can potentially address these 
long-standing societal challenges so directly. 

AI BIASES IN PERSPECTIVE 
While AI offers many important benefits, the potential risks get most of the media attention.1 
Will AI usher in a surveillance society? Will it eliminate jobs and diminish human worth? Will it 
increase the divide between the haves and have nots? Will any one nation gain a decisive edge? 
Will humans still be in control? Compared to these existential questions, the challenge of 
machine learning bias is both more manageable and a lesser danger. It is less dangerous 
because AI can mitigate human shortcomings, and it is more manageable because AI bias is 
correctable and businesses and governments have strong incentives to do so. 

That this bias exists is undeniable. A machine-learning system is only as objective as its 
underlying dataset. If this data reflects historical biases, then so will the system. If certain 
populations are not sufficiently represented statistically, then the system will be weak in those 
areas. These situations are analogous to the way surveys work. If a survey sample is not 
representative of the real world, or if the wording of a survey’s questions is slanted in some way, 
these deficiencies will affect the survey’s results. Similarly, if a facial recognition system doesn’t 
have enough faces from people of color, it will be less effective in identifying those faces, just as 
some Asian systems perform worse on non-Asian faces.  

The good news is that just as survey professionals strive to design random samples and ask 
neutral questions, so can AI developers take steps to assure the quality of their underlying data. 
Systems can, for example, be tested for bias by isolating criteria such as race, gender, location 
and other factors. Facial recognition weaknesses can and have been corrected through better 
data. These and similar techniques will only improve over time, as business practices mature and 
as the volume of relevant data steadily increases. While eliminating all bias is impossible (and 
often not desirable), building systems that outrun the average human is a very achievable task.  

RELATED CRITIQUES 
Unfortunately, building systems that demonstrably outperform or complement human decision-
making is not enough to satisfy many of today’s AI critics, as machine-learning systems are now 
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disparaged on numerous related fronts. Most of these critiques are not about bias per se. Rather, 
they reflect an underlying antitechnology, anticorporate bias. But if citizens are to accept the 
widespread use of AI, then the machine-learning community must do a better job of answering 
the five questions below: 

1. What sort of AI systems do we want? Different societies will need to find their own balance 
between, for example, the security and convenience benefits of an effective facial 
recognition system versus the potential risks of oppressive visual surveillance. 

2. How well do AI systems work in the real world? As with any innovation, governments and 
businesses need to evaluate when a system is ready for widespread use. It’s a familiar 
cost/benefit/risk calculation. But some systems have been branded as biased when the 
real problem is that they just aren’t good enough yet. 

3. Should AI decisions be explainable? While the logic behind data analytics and rule-based 
algorithms is often transparent, the inner workings of most machine-learning systems are 
not, and won’t be for the foreseeable future. Important AI applications, such as medical 
image diagnoses, are essentially black boxes that need to be evaluated on the quality of 
their output, not their lack of explainability.2 

4. What recourse should citizens have? Given the lack of explainability, citizen recourse may 
well be required in sensitive areas such as loan approvals or school acceptances. 
Sometimes, business and government AI operators will have to be able to do more than 
just say, “that’s what the system says,” and at least be able to match the recourse 
available in the pre-AI era. 

5. Are the results of these systems socially acceptable? An AI application might be based on a 
representative dataset and provide accurate output in the areas it was designed for. But if 
that output has an adverse effect upon a particular race, class, gender, or other group, 
the system might still be criticized as biased. We often see this with auto insurance, 
where premiums are based on a variety of risk factors that sometimes result in different 
rates for different demographic groups. 

Fears of AI bias also reflect the familiar hi-tech double-standard. A single potent example of an 
AI failure—such as the racist rantings of Microsoft’s chatbot, Tay, or a deadly accident involving 
a self-driving Tesla—will get vastly more media coverage than everyday car crashes or human 
misbehavior. Likewise, organizations such as the Algorithmic Justice League will continue to 
effectively publicize AI’s risks, failures, and injustices, sometimes in ways that are misleading. 
It’s important that the AI community be able to respond to concerns such as those in AJL’s 
movie, Coded Bias.3 

CONSCIOUS VS. UNCONSCIOUS BIAS 
Thus far, the bias we have discussed has been mostly unconscious in nature. Organizations 
almost never set out to build a system that discriminates by age, gender, race, disability, or any 
other factor, and most AI developers want to use the best data available. However, as these 
developers are usually technologists at heart, it’s fair to say that they sometimes fail to prioritize 
this issue—although this is now changing. Similarly, many human biases are also unconscious in 
nature. We may think that we are being impartial and fair, but our minds are full of stereotypes, 
preconceptions, self-interests, confirmation biases, and other discriminatory forces. 
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Conscious bias is another thing altogether. Conservatives might have a conscious bias towards 
systems that treat everyone the same, while liberals are more likely to factor in historical 
inequities. Should college admissions be based mostly on empirical test scores, or should the 
backgrounds of applicants be given much more weight? Should criminal sentencing be uniform, 
or is adjusting for individual circumstances essential to justice? Similar debates exist in virtually 
every professional field. As there are no consistently right or wrong answers, changes in policy are 
often a matter of which conscious biases prevail at any one time or in any one situation. 

Conscious bias will be of increasing importance in the design of machine-learning systems going 
forward. Developers will almost certainly improve the quality of the data they are relying on. But 
when this data still produces results that society deems “problematic,” what should be done? It’s 
not hard to imagine a future where AI developers are expected to train their systems to produce 
more socially desirable outcomes. In this scenario, AI applications that were originally designed 
to mitigate “bad” unconscious human biases may soon be expected to entrench “good” 
conscious ones. Such systems will no longer just have to outrun the bear; they will be the bear, 
as human and machine decision-making coevolve, and increasingly become one and the same. 

About This Series 

ITIF’s “Defending Digital” series examines popular criticisms, complaints, and policy 
indictments against the tech industry to assess their validity, correct factual errors, and debunk 
outright myths. Our goal in this series is not to defend tech reflexively or categorically, but to 
scrutinize widely echoed claims that are driving the most consequential debates in tech policy. 
Before enacting new laws and regulations, it’s important to ask: Do these claims hold water? 
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